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Anuran amphibian populations worldwide are in decline due to a variety of factors including habitat destruction,
climate change, disease, introduction of non-native species, and environmental contamination. We conducted a
laboratory trial with Incilius nebulifer (synonym: Bufo nebulifer) to determine at what level salinity negatively affects
hatching and metamorphosis, and how exposure to salinity during development affects metamorph characteristics
that influence adult fitness. Embryos exhibited 95.5–99.5% hatching success at salinities of 0, 2, and 4 parts per
thousand (ppt); 74.4% success at 6 ppt; and no hatching at 8 or 10 ppt. Salinity affected hatching success and larval
survival, and we found linear trends between higher salinity and lower fractions of hatched embryos and living larvae.
The odds of hatching were about the same for 0, 2, and 4 ppt, significantly lower for 6 ppt, and zero for 8 and 10 ppt.
The odds of survival to metamorphosis were significantly lower in 6 ppt relative to 0, 2, and 4 ppt combined. Time to
metamorphosis, mass, and hind limb length of recent metamorphs showed significant differences among treatment
groups, with salinity having large effects on these variables. Development time was longer, mass was lower, and hind
limb length was shorter in the 0 and 2 ppt treatments compared to 4 or 6 ppt. We showed that salinity affected the
survival of early life stages of Incilius nebulifer and characteristics that have been linked to adult fitness. Our study
suggests that low levels of salinity may affect the survival and fitness of other anurans.

A
NURAN amphibian populations worldwide are in
decline due to a variety of factors including habitat
destruction, climate change, disease, introduction

of non-native species, and environmental contamination
(Blaustein and Kiesecker, 2002; Peterson et al., 2002; Stuart
et al., 2004). Susceptibility to these factors differs among
species and populations (Christman, 1974; Bridges and
Semlitsch, 2000; Blaustein and Kiesecker, 2002; Gomez-
Mestre and Tejedo, 2003; Karraker and Ruthig, 2009; but see
Langhans et al., 2009), and depends in part on environ-
mental conditions such as water chemistry (Blaustein and
Kiesecker, 2002). Salinity is one parameter of water chem-
istry that influences the survival, development, and fitness
of amphibians, and thus may shape their diversity, distri-
bution, and abundance (Munsey, 1972; Dunson, 1977;
Gomez-Mestre and Tejedo, 2005; Smith et al., 2007;
Haramura, 2008; Rios-Lopez, 2008).

Most anurans have small migratory ranges compared to
other vertebrates, often dispersing no more than 1000 m
from their natal sites (Sinsch, 1990), so selection of breeding
site depends on the aquatic habitats available within narrow
spatial and temporal windows. (Noland and Ultsch, 1981;
Sinsch, 1990). Some species choose oviposition sites partly
on the basis of salinity (Haramura, 2008), which is a limiting
factor for breeding and development even for apparently
saline-tolerant species (Beebee, 1979; Andren and Nilson,
1985; Viertel, 1999; Haramura, 2007). Any given species
often requires specific environmental conditions for devel-
opment and metamorphosis of embryos and larvae (Noland
and Ultsch, 1981; Werner et al., 2009). Thus, the distribu-
tion of adult anurans depends largely on the location of
suitable oviposition sites and on the ability of embryos and
larvae to survive, develop, and metamorphose at those sites.

Aquatic habitats in coastal areas can experience highly
variable incursions of saline water from tides, land subsi-
dence, receding coastlines, and storms, as well as from land

clearing, river regulation, agriculture, de-icing, and con-
struction of levees and canals (Odum, 1988; Allen et al.,
1994; Christy and Dickman, 2002; Pardue et al., 2005; Doyle
et al., 2007; Petranka and Doyle, 2010). Salinity tolerance in
sensitive embryonic and larval stages is therefore particular-
ly important to the survival and distribution of anurans in
coastal areas. Although multifactorial field observations
help to determine the causes of declining amphibian
populations (Blaustein and Kiesecker, 2002), experiments
that manipulate one or more environmental parameters are
necessary to demonstrate causation (Kefford et al., 2004).
A wide variety of salinity trials are represented in the
literature, although the results can be difficult to compare
due to different methods and salt sources, developmental
stages, species, and salinity units (Table 1). To facilitate the
comparison of results from the literature, all units were
converted to the concentration-based unit parts per thou-
sand (ppt) for the current discussion. The present study used
controlled laboratory experiments and a commercially
available seawater substitute to determine effects of salinity
on survival of embryos and larvae and on characteristics of
recent metamorphs of the Gulf Coast Toad, Incilius nebulifer
(synonym: Bufo nebulifer).

Incilius nebulifer is a freshwater species native to the Gulf
Coast, from southern Arkansas to Veracruz, Mexico (Mul-
cahy and Mendelson, 2000). It breeds in temporary water
bodies including roadside and irrigation ditches, and
coastal marsh pools (Dundee and Rossman, 1989; Ham-
merson and Canseco-Márquez, 2004), and is assumed to be
somewhat salt-tolerant. The population in the present
study is not regularly exposed to salt water and, therefore,
provides a relatively powerful test of the ability of this
species to tolerate future salinity increases. In a two-phase
laboratory experiment, we used salinity treatments repre-
senting the range found in the local coastal area to ask
at what level salinity negatively affects hatching and
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metamorphosis of this species, and how exposure to
salinity during embryonic and larval development affects
metamorph characteristics that may influence adult repro-
ductive fitness.

MATERIALS AND METHODS

Experimental animals and culture conditions.—Three amplec-
tant pairs of I. nebulifer were collected from a ditch in
Audubon Park, an urban golf course and public park in New
Orleans, LA, USA, during July 2006. There is no evidence of
any salt water incursion in this area; the park did not flood
during Hurricane Katrina in 2005.

Each pair was placed in a separate bucket of water from
the site and allowed to deposit and fertilize their eggs.
The adults were then released. The eggs were not assessed
for developmental stage at the time they were assigned to
treatments. However, all were laid within the same three-
hour time span, and assigned to treatments on the same day
they were laid.

Three groups of 20–25 embryos from each clutch of eggs
were haphazardly assigned to each of six salinity treatments,
giving a total of 54 groups (3 clutches 3 3 blocks 3 6
salinities). The salinity treatments were 0, 2, 4, 6, 8, and 10
parts per thousand (ppt), corresponding to approximately 0,
5.7, 11.4, 17.1, 22.9, and 28.6% seawater (% sw), respective-
ly, where 100% sw is 35 ppt. This salinity range reflects that
found in the Gulf coastal marshes and the nearby estuarine
system of Lake Pontchartrain (Sikora and Kjerfve, 1985;
Doyle et al., 2007). Treatments were prepared using
dechlorinated tap water and artificial sea salt (Instant
Ocean, Aquarium Systems, Inc., Mentor, OH), which
provides the same ionic proportions as seawater (Neiheisel
and Young, 1992). Salinity of each treatment was confirmed
using a YSI-85 Oxygen Conductivity Salinity and Temper-
ature meter (YSI, Yellow Springs, OH).

During Phase I of the experiment, embryos were held in
opaque white plastic containers, with a mean and SD of
21.9 6 0.61 embryos per container (Table 2). A total of
1183 embryos were tested. Each treatment group was held
in approximately 237 mL of water, beneath full-spectrum
lights on a 12:12 h light:dark cycle in a temperature-
controlled room at 21.6 6 0.5uC. Containers were checked
daily, and the water level was kept constant until all larvae
had hatched and were free-swimming on Day 7. Dead
embryos and larvae were removed when found, and embryo
capsules were removed from containers in which all
embryos had hatched. Phase I of the experiment ended on
Day 7 when the larvae were at Gosner stage 25 (Gosner,
1960) and the fate of embryos (hatched or died) was
recorded.

Larvae used in Phase II were haphazardly selected from
those alive on Day 7. Due to 100% mortality in the Phase I
treatments of 8 and 10 ppt, Phase II included only 0, 2, 4,
and 6 ppt treatments. Groups of four larvae were assigned
to the same block and salinity treatment in which they
had hatched, giving a total of 144 larvae (4 individuals
3 3 clutches 3 3 blocks 3 4 salinities). Larvae were held
individually in approximately 250 mL of water in clear
plastic cups under the same light and temperature condi-
tions used for embryos. Water level was kept constant, and
complete water changes were made every other day when
25.6 6 1.9 mg of food was added. The food was a 3:1 ratio
(by mass) of Geisler Superior Nutrition Diet Rabbit Food
(Sergeant’s Pet Care Products, Inc.) and TetraMin Tropical

Flakes Clear Water Formula (Tetra Holding [U.S.], Inc.)
ground into a powder.

Individual larvae were checked daily, and the emergence
of a forelimb was considered the beginning of metamor-
phosis, whereupon the time to metamorphosis was recorded
in days (hereafter referred to as time) and the individual was
removed from the salinity trial. Water depth was reduced to
1 cm of dechlorinated fresh water, and a small wad of
untreated brown paper towel was added for the metamorph
to sit on. Each metamorph was held under the same full-
spectrum light and temperature conditions as in the larval
stage until the tail was absorbed. Individuals were then
blotted and weighed to the nearest 0.01 mg, and snout-to-
vent length (SVL) and hind limb length (HLL) were
measured to the nearest 0.1 mm using a caliper.

Statistical analyses.—The hypotheses that salinity affected
hatching success in Phase I and larval survival in Phase II
were tested using the chi-square test and the chi-square test
for trend. In this study, embryo and larval survival are given
as proportions, and the appropriate way to express the
significance of differences between proportions is to use
odds ratios (Sokal and Rohlf, 1995). Odds ratios show the
probability of an event happening in one treatment relative
to another, and can be compared using the chi-square
distribution. For Phase I, we used the Mantel-Haenszel test
of homogeneity of odds ratios to ask whether the odds of
hatching were the same in each treatment relative to the
treatment in which the greatest proportion of embryos
successfully hatched. For Phase II, we computed the chi-
square distributed single squared difference over the esti-
mated variance and used it to ask whether there was a
difference in larval survival among salinity levels.

To test for a correlation between mass and the other three
variables (time, SVL, and HLL) in Phase II, we performed a
Pearson correlation test followed by a comparison of slopes
and intercepts equivalent to an Analysis of Covariance
(ANCOVA). Chi-square, correlation, and covariance tests
were performed using GraphPad Prism version 5.03 (Graph-
Pad Software, San Diego, CA; www.graphpad.com). The
hypothesis that mean time, mass, and HLL varied among
salinity treatments was tested using Multivariate Analysis of
Variance (MANOVA; R version 2.11.1). We power trans-
formed the time data for normality, and included block
and clutch as random factors. Data for 17 larvae and
4 metamorphs that died during Phase II were omitted.
Univariate ANOVAs were conducted for significant MAN-
OVA results, and effect sizes were calculated by dividing the
Sum of Squares for each factor by the total Sum of Squares
(Cohen, 1988).

RESULTS

Embryonic hatching success.—In total, 724 embryos (61.2%)
hatched and produced larvae that survived to Day 7
(Table 2). There was a significant effect of salinity on
hatching success (x2 5 955.2, P , 0.001), and a significant
linear trend between salinity and the fraction of embryos
that hatched (x2 5 759.3, P , 0.001). Fewer embryos
hatched in 6 ppt (74.4%) than in the lower salinities
(95.5–99.5%), and none hatched at 8 or 10 ppt. The odds
of successfully hatching were highest in 2 ppt, with the odds
of hatching 6.2 times better than in 0 ppt, 9.4 times better
than in 4 ppt, and 68.5 times better than in 6 ppt. We used
2 ppt as the reference for the test of homogeneity of odds
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ratios. As expected, we found that the odds ratios relative to
survival in 2 ppt were different among the treatments (x2

H 5

4956120.12, P , 0.001), and therefore we tested separate
estimates. The odds were clearly the same in 8 and 10 ppt
(x2

H 5 0.65, P , 0.001), and were the same in 0 and 4 ppt
(x2

H 5 0.42, P , 0.001), but were different between 4 and
6 ppt (x2

H 5 43.42, P , 0.001) and 6 and 8 ppt (x2
H 5

1562126.05, P , 0.001). The odds of hatching were not
significantly different in 0, 2, and 4 ppt, but were
significantly lower in 6 ppt, and zero in 8 and 10 ppt.

Larval mortality.—127 (88.2%) larvae out of the 144
selected for Phase II survived to metamorphosis. Of the
17 that died, all but one were from the 6 ppt treatment.
There was a significant effect of salinity on larval survival
(x2 5 49.29, P , 0.001), and a significant linear trend
between salinity and the fraction of larvae that survived to
metamorphosis (x2 5 29.47, P , 0.001), with fewer larvae
surviving in 6 ppt (55.6%) than in lower salinities (99.1%).
The odds of survival to metamorphosis were 85.6 times
better in the lower salinities combined than in 6 ppt. An
odds ratio of 1.0 indicates no difference in outcomes
between two treatments (Sokal and Rohlf, 1995). We
found a significant difference (x2 5 14.66, P , 0.001)
between the observed odds ratio and an odds ratio of 1.0.
The odds of larvae surviving to metamorphosis were
significantly lower in 6 ppt relative to 0, 2, and 4 ppt
combined.

Time to metamorphosis and metamorph body size.—Four of
the 127 individuals that survived to metamorphosis (two
each from the 0 and 2 ppt treatments) died of unknown
causes and were not included in the analysis of body size.
Results suggest that as salinity increased, time increased,
mass and HLL decreased, and SVL stayed the same
(Fig. 1A–D). Time, SVL, and HLL were significantly corre-
lated with mass (r2 5 0.09, 0.41, and 0.31, respectively, P ,

0.001). When these variables were regressed against mass,
no differences among groups for slope were found (F 5

1.28, 0.83, and 1.94, respectively, P . 0.05), suggesting no
interaction effects between salinity and mass. Additional-
ly, no differences among salinity groups for elevation
were shown for SVL (F 5 2.27, P . 0.05), supporting the
conclusion suggested by Fig. 1C that, independent of
mass, SVL was not significantly affected by salinity.
However, elevations of the regression lines for time (F 5

31.35, P , 0.001) and HLL (F 5 4.29, P , 0.01) varied
among groups and thus these variables were included in
the MANOVA.

The MANOVA for time, mass, and HLL showed a
significant effect of salinity (P , 0.001). Univariate ANOVAs

Table 2. Phase I Mean (± SD) Embryos per Container and Total
Number of Embryos Hatched, with Number Died in Parentheses.

Salinity (ppt) Embryos per container Total embryos

0 22.1 + 1.54 193 (6)
2 21.3 + 1.22 191 (1)
4 22.0 + 1.73 189 (9)
6 22.6 + 2.30 151 (52)
8 21.8 + 1.30 0 (196)
10 21.7 + 1.50 0 (195)
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showed that the effect was significant for each of these
variables (P , 0.001), and calculated effect sizes showed that
salinity had large effects on time (g2 5 0.39), mass (g2 5

0.41), and HLL (g2 5 0.29). Tukey’s HSD test grouped the 0
and 2 ppt treatments, but kept separate the 4 ppt treatment
and the 6 ppt treatment. Time to metamorphosis was
significantly longer, mass was significantly lower, and HLL
was significantly shorter in the 0 and 2 ppt treatments
compared to 4 or 6 ppt.

DISCUSSION

The present study showed deleterious effects of salinity on
hatching success and other parameters of I. nebulifer above
4 ppt, and a 100% lethal threshold for embryos between 6
and 8 ppt. Compared to some species, I. nebulifer exhibited
a high mortality threshold for embryos. The mortality
thresholds for embryos of Buergeria japonica, Lithobates
pipiens, and Rhinella marina have been shown to be 4, 5,
and 5.3 ppt, respectively (Ely, 1944; Ruibal, 1959; Haramura,
2007). The range of salinities in which metamorphosis will
take place seems wider. Larvae in this study metamorphosed
in 6 ppt, although survival was reduced. Comparatively,
metamorphosis thresholds for larvae of Litoria aurea and
Fejervarya limnocharis have been shown to be 1.9 and 9 ppt,
respectively (Christy and Dickman, 2002; Wu and Kam,
2009).

For larval development, a threshold occurred in the
present study between 2 and 4 ppt, when time to
metamorphosis increased and mass and hind limb length
decreased. Responses to salinity similar to these have been
shown in other studies, but the pattern of slower develop-
ment and lower mass is not entirely consistent in the
literature. Epidalea calamita has been shown to respond to
increased salinity with decreased survival, slower develop-
mental and growth rates, and smaller juveniles entering
terrestrial habitats (Gomez-Mestre and Tejedo, 2003). How-
ever, this species has also been shown to metamorphose at
the same mass in higher salinities (2.9 to 4.8 ppt) compared
to very low salinity (0.14 ppt; Gomez-Mestre et al., 2004).
Lithobates sylvaticus also exhibited the same mass in different
treatments, but developed more quickly in response to small
increases in salt concentration from 0 to 1 ppt (Sanzo and
Hecnar, 2006). Petranka and Doyle (2010) also found that
the mean mass of larvae of L. sylvaticus was positively
correlated with salt concentration between 0 and 4 ppt.
Larvae of Litoria ewingii grew more slowly, took longer to
metamorphose, and had higher mortality during salinity
stress compared to controls (Chinathamby et al., 2006;
Squires et al., 2010). But, L. ewingii were also found to
exhibit higher mass in low to moderate salinities (1.4 to
4.2 ppt) compared to no or high (5.6 ppt) salinity
(Chinathamby et al., 2006). Anurans may exhibit compen-
satory growth after salinity stress as shown by larvae of
L. ewingii that grew slower during transient exposure to
salinities up to approximately 5.3 ppt, then grew faster
during the recovery phase, exhibiting no difference in mass
upon metamorphosis compared to controls (Squires et al.,
2010). The ability to compensate after a temporary period of
stress makes sense for species that breed in temporary water
bodies and are under selective pressure to use recent growth
history as a cue to metamorphic timing (Wilber and Collins,
1973).

Response to salinity stress is stage-specific due to changes
in, for example, gill structure, liver function, and hormone

Fig. 1. Phase II mean (6 SD) results for each of four variables: time to
metamorphosis (A), mass (B), SVL (C), and HLL (D). SVL 5 snout-to-
vent length; HLL 5 hind limb length.
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concentrations (Uchiyama and Yoshizawa, 1992; Gomez-
Mestre et al., 2004; Wright et al., 2004). Viertel (1999) found
that larvae of Rana temporaria at Gosner stages 20 to 23 were
more sensitive to salinity concentration than earlier stages,
though they were exposed for a shorter time period. Larvae
of Fejervarya cancrivora at the external gill stages (Witschi
stages 21–22) were able to survive up to 14 ppt, but
advanced larvae with internal gills (Taylor and Kollros
stages I–XVIII) were able to survive 17.5 ppt (Uchiyama
and Yoshizawa, 1992). Larvae can often survive in higher
salinity concentrations that those in which they can
metamorphose. In an earlier study of F. cancrivora, larvae
did not metamorphose in greater than 7 ppt (Gordon and
Tucker, 1965). And Christy and Dickman (2002) found that
larvae of Litoria aurea could survive in up to 3.5 ppt, but
required less than 2 ppt to metamorphose.

In the present study, embryos of I. nebulifer exhibited
deleterious effects of increased salinity at 6 ppt, while
larvae and juveniles showed effects at 4 ppt. The only
response we measured for embryos was survival, and it is
not surprising that lethal effects would be observed at
higher salinities than non-lethal effects on development
and growth. Somewhat different results might have been
found if individuals were first exposed to detrimental
salinities at different stages of development. For example,
Petranka and Doyle (2010) found higher mortality and
slower growth of Lithobates sylvaticus at lower salinity levels
for individuals introduced to the treatments as embryos
than for those introduced as larvae. Furthermore, the eggs
used in the present study were oviposited in fresh water.
Chinathamby et al. (2006) hypothesized that the lack of
immediately apparent negative effects of salinity on late-
stage embryos of Litoria ewingii in 5 ppt could be due to
eggs oviposited in fresh water absorbing a relatively salt-
free solution into the egg mass prior to the salinity
treatment.

Salinity effects vary among taxonomic groups. Gosner and
Black (1957) found that salinity caused abnormalities of
morphology, locomotion, and activity rate at all treatment
levels (from 1.5 to 3.5 ppt) in two species of Hylidae (Pseudacris
crucifer and P. kalmi), but four species of Ranidae (Lithobates
palustris, L. pipiens, L. sylvaticus, and L. virgatipes) were
unaffected by the lowest concentration, and showed some
normal development in the highest concentration. Karraker
and Ruthig (2009) also found that embryos of Lithobates
clamitans were ‘‘relatively insensitive’’ to treatments of road
salt compared to embryos of Ambystoma maculatum. And
while larvae of two microhylids (Kaloula pulchra and Microhyla
ornata) exhibited decreased size and survival above 4.4 ppt,
larvae of three non-microhylids (F. limnocharis, Bufo melanos-
tictus, and Polypedates megacephalus) showed no effects of
salinity up to 6.6 ppt (Karraker et al., 2010).

Salinity effects sometimes vary even among closely related
groups. Adults and larvae of saline tolerant F. cancrivora
were found to tolerate environmental salinities as high as
28–39 ppt, but the closely related Hoplobatrachus tigerinus
was found to be a ‘‘normal fresh-water frog’’ in overall
salinity tolerance, osmoregulatory responses, and response
to desiccation (Gordon et al., 1961). And, Smith et al. (2007)
found variation between species within the same family in
site occupancy relative to salinity, with a 50% probability of
occupancy occurring at 3.5 ppt for Limnodynastes dumerilii,
while Limnodynastes peronei achieved 50% occupancy only at
approximately 2.1 ppt.

Incilius nebulifer is likely to encounter salinization in
the ephemeral water sources of coastal habitats along the
southern United States down into Central America, and
farther inland in areas subject to urban and industrial
development. The population sampled for this study had
likely not been exposed to high concentrations of salinity in
the field. Differences in response might be expected in a
brackish water population. Gomez-Mestre and Tejedo (2003)
found that larvae of E. calamita sampled from brackish water
ponds had higher salinity tolerance than those sampled
from freshwater. However, they also found that all popula-
tions shared the same upper limit of 10 ppt.

Although I. nebulifer is considered somewhat saline-
tolerant (Dundee and Rossman, 1989), results of the present
study found deleterious effects of relatively low salinities on
survival, development, and growth of embryos, larvae, and
juveniles. In nature these effects can impact distribution
and abundance. In Australian wetlands, Smith et al. (2007)
found that larvae species diversity dropped rapidly above
approximately 2 ppt, and was zero above approximately
4 ppt. In northern Puerto Rico, Rios-Lopez (2008) found
that abundance of Leptodactylus albilabris decreased with
increasing salinity along an inland-to-coastal gradient,
while abundance of the co-occurring R. marina concomi-
tantly increased with increasing salinity.

The present study found that higher salinities resulted in
lighter metamorphs with shorter hind limbs. Muscle mass
and hind limb length are important characteristics for
predicting locomotory speed in anuran amphibians (Choi
et al., 2003). Phillips et al. (2006) linked hind limb length to
locomotion and dispersal ability in invasive toads (R.
marina), and concluded that anurans with longer legs have
improved dispersal ability. Therefore, an environmental
stressor that results in shorter hind limbs for juveniles
entering the terrestrial environment may well reduce their
ability to disperse.

Salinity effects can also impact individual reproductive
success (Leips and Travis, 1994; Bridges and Semlitsch, 2000;
Boorse and Denver, 2004). Semlitsch et al. (1988) found
that the timing of and size at metamorphosis of juvenile
Ambystoma talpoideum were directly correlated with size and
age of adults at first reproduction. Similarly, Pseudacris
triseriata that metamorphosed later or at smaller size were
less likely to return to the natal pond to breed the first year
after metamorphosis (Smith, 1987), reducing their lifetime
opportunities for reproduction.

The present study suggests that exposure of early life
stages of I. nebulifer to salinities above 2 ppt, whether due to
natural or anthropogenic events, will increase early mortal-
ity, reduce adult fitness, and have an overall negative effect
on their distribution and abundance. Even considering the
variation inherent in salinity tolerance among taxonomic
groups and populations, extending our results suggest that
small changes in salinity at critical life stages may affect
survival, fitness, distribution, and abundance of many
anurans worldwide.
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